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Abstract – Search and rescue path planning is known to be 
computationally hard, and most techniques developed to solve 
practical size problems have been unsuccessful to estimate an 
optimality gap. A mixed-integer linear programming (MIP) 
formulation is proposed to optimally solve the multi-agent 
discrete search and rescue (SAR) path planning problem, 
maximizing cumulative probability of success in detecting a 
target. It extends a single agent decision model to a multi-agent 
setting capturing anticipated feedback information resulting 
from possible observation outcomes during projected path 
execution while expanding possible agent actions to all possible 
neighboring move directions, considerably augmenting 
computational complexity. A network representation is further 
exploited to alleviate problem modeling, constraint specification, 
and speed-up computation. The proposed MIP approach uses 
CPLEX problem-solving technology in promptly providing near-
optimal solutions for realistic problems, while offering a robust 
upper bound derived from Lagrangean integrality constraint 
relaxation. Modeling extension to a closed-loop environment to 
incorporate real-time action outcomes over a receding time 
horizon can even be envisioned given acceptable run-time 
performance. A generalized parameter-driven objective function 
is then proposed and discussed to suitably define a variety of 
user-defined objectives. Computational results reporting the 
performance of the approach clearly show its value. 

Keywords: search path planning, search and rescue, multi-agent, 
linear programming 

I. INTRODUCTION

Search and rescue path planning is an increasingly 
important problem for a variety of civilian and military 
domains such as homeland security and emergency 
management. The basic discrete SAR or optimal searcher path 
problem involving a stationary target is known to be NP-Hard 
[1]. SAR may be generally characterized through multiple 
dimensions and attributes including: one-sided search in which 
targets are non-responsive toward searcher’s actions, two-
sided, describing target behavior diversity (cooperative, non-
cooperative or anti-cooperative), stationary Vs. moving target 
search,  discrete Vs. continuous time and space search (efforts 
indivisibility/divisibility), observation model, static/dynamic 
as well as open and closed -loop decision models, pursued 
objectives, target and searcher multiplicity and diversity. Early 

work on related search problems emerges from search theory 
[2], [3]. Search-theoretic approaches mostly relate to the effort 
(time spent per visit) allocation decision problem rather than 
path construction. Based upon a mathematical framework, 
efforts have increasingly been devoted to algorithmic 
contributions to handle more complex dynamic problem 
settings and variants [4], [5]-[7]. In counterpart, many 
contributions on search path planning may be found in the 
robotics literature in the area of robot motion planning [8] and, 
namely, terrain acquisition [9], [10] and coverage path 
planning [11],[12], [13]. Robot motion planning explored 
search path planning, primarily providing constrained shortest 
path type solutions for coverage [14], [15] problem instances. 
These studies typically examine uncertain search environment 
problems with limited prior domain knowledge, involving 
unknown sparsely distributed static targets and obstacles. 
Separate work on robot search algorithms is also referenced on 
the pursuit-evasion [16] theme although the nature and 
complexity of the problem are somewhat different. Recent 
taxonomies and comprehensive surveys on target search 
problems from search theory and artificial 
intelligence/distributed robotic control, and pursuit-evasion 
problem perspectives may be found in [17], [5], [18]-[20] and 
[16] respectively. 

Exact problem-solving methods for sequential decision 
search problem formulations show computational complexity 
to scale exponentially. For instance, dynamic programming 
[5],[20],[7],[21] or tree –based search techniques [22], [23] 
may satisfactorily work under specific constraints and 
conditions but ultimately face the curse of dimensionality, 
showing poor scalability even for moderate size problem. A 
MIP-based approach/formulation has recently been proposed 
as well to solve a related constrained pursuit-evasion problem 
[24]. But problem attributes, constraints and complexity prove 
distinctive from target search, while the approach remains sub-
optimal and problem-solving limited to small size problems. 
This paved the way to the development of efficient heuristic 
and approximate methods. Some early approaches simply 
reduce computational complexity by relaxing some hard 
constraints to keep the problem manageable. Methods inspired 
from search theory propose procedures mainly based on 
branch and bound [21], [7] or path finding A* types of 
techniques and variants. Despite the development of many 



 

heuristics and approximate problem-solving techniques for the 
SAR problem [5], [20], published procedures still deliver 
approximate solution and mostly fail to provably estimate real 
performance optimality gap for practical size problems, 
questioning their real expected relative efficiency. 

In this paper, we propose a new exact mixed-integer linear 
programming formulation to optimally solve the multi-agent 
discrete search path planning problem for a stationary object. 
In the problem model, ‘open-loop with anticipated feedback’ 
refers to offline planning, while capturing information 
resulting from predicted agent observations (projected cell 
visit action outcome) as opposed to real feedback. Anticipated 
feedback augments pure open-loop formulations which simply 
ignore information feedback, while significantly improving 
solution quality, and mitigating computational complexity 
limitations traditionally associated with closed-loop problem 
formulations (e.g. dynamic programming, and partially 
observable Markov decision processes). This contribution 
aims at extending a single agent search path planning decision 
model [25] to a multi-agent environment in which feasible 
agent actions are further expanded to any possible neighboring 
move directions, while capturing anticipated feedback 
information resulting from possible observation outcomes 
occurring from projected path execution. In that setting, the 
open-loop with anticipated feedback information 
(observations) decision model involves n agents (searchers) 
with imperfect sensing capability (but false-positive 
observations -free) searching an area (grid) to maximize 
cumulative probability of success in detecting a target, given a 
time horizon and prior cell occupancy probability distribution. 
The model takes advantage of anticipated feedback 
information resulting from observations outcomes along the 
path to update target occupancy beliefs and make better 
decisions. A network flow representation significantly reduces 
modeling complexity (e.g. constraint specification) as well as 
implementation and computational costs. The new decision 
model relies on an abstract network representation, coupled to 
a parallel computing capability (e.g. using the CPLEX solver
[26]) to gain additional speed-up. The novelty lies in a new 
exact linear model, and the fast computation of near optimal 
solutions of practical size problems, providing a tight upper 
bound on solution quality through Lagrangean programming 
relaxation. The computable upper bound constitutes an 
objective measure to fairly estimate and compare performance 
gap against various techniques. Computational results prove 
the proposed approach very efficient. Small computational 
run-time naturally enables open-loop model (with anticipated 
feedback) extension to a closed-loop formulation in which 
action outcomes from the previous episode may be explicitly 
incorporated in real-time to update target occupancy belief 
distribution. As a result, an updated solution can be 
dynamically computed, by periodically solving new problem 
instances taking advantage of feedback information (from real 
observation outcomes), over short rolling horizons. The idea is 
to readily exploit episodic feedback information whenever 
available. In that case, associated computational run-time 
corresponds to the time required to visit a cell. This way to 

embrace constructive dynamic planning in real time through 
inexpensive computational effort is largely preferable to 
dynamic programming techniques aimed at computing an 
exhaustive optimal policy, mapping suitable actions to any 
possible posterior states at a prohibitive computational cost. 
The proposed approach rather determines the best sequence of 
moves given the current state while updating the path solution 
resulting from partial path execution by repeatedly solving a 
new problem instance characterizing the follow-on state. 
Similarly, large time horizon problems can be solved 
efficiently, optimizing multiple problem instances over 
receding horizons.

The structure of the paper is organized as follows. Section 
II first introduces problem definition, describing the main 
characteristics of the open-loop search path planning problem 
with anticipated feedback. Then the main solution concept for 
the problem is presented in Section III. It describes a new 
mixed-integer linear programming network flow formulation 
combined with network representation to efficiently compute a 
near-optimal solution. The proposed CPLEX-based problem-
solving technique and some implementation issues are then 
briefly reported in Section IV. Section V reports and discusses 
computational results depicting the value of the proposed 
method. Finally, a conclusion is given in Section VI. 

II. PROBLEM 

A. General Description  
The discrete centralized search and rescue path planning 

problem involves a team of n homogeneous stand-off sensor 
agents searching a stationary target in a bounded environment 
over a given time horizon. From a search and rescue mission 
perspective, the goal consists in maximizing the cumulative 
probability of success in detecting a target within a given 
region. Represented through a grid, the search region 
characterizes an area defined as a set of cells N, describing 
possible target locations. Presumably occupying a single cell, 
the precise location of the target is assumed unknown. A prior 
target location probability density distribution for which cell 
occupancy probabilities sum up to one can be derived from 
domain knowledge. It reflects possible individual cell 
occupancy, defining a grid cognitive map or uncertainty grid. 
Should the target be located outside the search areas of 
interest, a special inaccessible, and invisible virtual cell would 
simply be added to the basic problem description to preserve 
the sum of probability property. The cognitive map constitutes 
a knowledge base describing a particular world state, including 
variables such as target occupancy belief distribution, time, 
agent position and orientation. An example of a cognitive map 
is illustrated in Fig. 1 at a specific point in time. 

 
The duration of a cell visit or service time is assumed 

constant, specifying the period of each episode. Vehicles are 
assumed to visit different cell locations at the same time, and 
fly at slightly different altitudes to avoid colliding with one 
other. A search path solution consists in constructing an agent 
path plan selecting base-level control action to maximize 
target detection. 



 

Figure 1. Uncertainty grid /cognitive map at time step t. The 4-agent team 
beliefs are displayed through multi-level shaded cell areas. Projected agent 

plans are represented as possible paths. 

B. Agent Path Planning  
Episodic agent search path planning decision is based on 

agent’s position (cell location), specific orientation 
{N,S,E,W,NE,SE,SW,NW} and speed determining possible 
legal moves to adjacent cell locations. For example, the 3-move 
agent investigated in [25] is limited to three possible moving 
directions with respect to its current heading, namely, ahead, 
right or left as depicted in Fig. 2. In this work, agent movement  

 
Figure 2. Agent’s region of interest displayed as forward move projection span 

(possible paths), for a 3-move agent over a 3–step time horizon. 
 
or manoeuvring capability is generalized to all degrees of 
freedom, permitting free motion along any possible directions 
to explore its neighborhood. An agent can therefore legally 
move toward its neighbouring cells offering eight alternate 
possible directions at each time step. This additional capability 
expands an agent path solution space by a factor (8/3)T over a 
3-move planning agent for a given time horizon T, significantly 
increasing computational complexity. 

The primary goal consists in planning base-level control 
action moves to maximize probability of success (target 
detection) over the entire grid. 

C. Cumulative Probability of Success 
In the proposed open-loop SAR model, the probability to 

successfully detect the target resulting from n agent path 
solution executions on the grid is defined as the sum over cells 
of the product of the probability of detection reflected from 
cell visits and target cell occupancy belief dictated by the 
cognitive map (grid) [5], [27], [28]. Cumulative probability of 
success (CPOS) for team path solutions (sequence of cell 
visits) represents the probability that detection occurs for the 
first time over one of the time intervals defining horizon T. It 
relates probability of first detection to binary observation 
outcome zct (1: positive, 0: negative) from cell c visit over time 

interval t, target cell c occupancy state Xc (1: positive, 0: 
negative) and past observation outcomes (history) Zt-1 up to the 
end of interval t-1: 

  
)0,1,1( 1

Nc t
tcct ZXzpCPOS  (1) 

where Zt-1=0 corresponds to a negative observation outcomes 
history {zc(0)0=0, zc(1)1=0,…, zc(t-1) t-1=0} before time interval t, 
meaning that the target has not been observed so far. 

Exploiting conditional independence probability property 
(p(A,B)=p(A|B)p(B) ) and, the fact that current cell visit 
observation outcome given target occupancy is independent of 
past observation outcomes, equation (1) is further developed 
leading to the expression: 
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Using Baye’s theorem, posterior probability/belief of target 
cell c occupancy given past negative observation outcomes is 
given by: 
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By substituting expression (3) in (2), CPOS can be revisited as 
follows: 
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CPOS can then be finally expressed in a more convenient form 
as: 

Nc t
ct

Nc t
ctcc posppCPOS  (5) 

where posct represents the probability of successfully detecting 
the target for the first time over the period t during a visit in 
cell c. pct refers to the ‘non-normalized’ posterior 
probability/belief of cell target occupancy during time interval 
t which incorporates “anticipated” information feedback that 
would result from past visits, as derived from (3) and (4). As 
for pcc, it is the probability on a specific agent visit c to 
correctly detect the target in cell c given that the target is 
present in cell c (p(zct=1|Xc=1)).  pcc depends on cell c. It 
should be emphasized that CPOS definition referring to first 
target detection assumes no ‘false positive’ detection from 
sensors (i.e. p(zct=1| Xc=0) = 0 ) to make sense, otherwise one 
could not claim that the target has been found for sure. 
Accordingly, an agent sensor is assumed to be false positive 
free, meaning that a vacant cell visit always results in a 
negative observation outcome by the sensing agent. 
Conversely, based on this assumption, a positive observation 
confirms that the target has been found and that the search task 
may be interrupted. This condition does not however preclude 



 

the occurrence of false negative outcomes (‘miss’) as agent 
sensors are not perfect. In the current setting, sensor range 
defining visibility or footprint (coverage of observable cells 
given the current sensor position) is limited to the cell being 
searched. 
 

III. MIXED-INTEGER LINEAR PROGRAMMING MODEL 
FORMULATION 

A. Network Representation 
A network representation is used to simplify modeling and 

constraint specification as well as problem-solving, as it 
eliminates the need to explicitly capture all constraints. These 
include maximum path length or deadline, admissible/legal 
move, and disconnected subtours elimination which may 
significantly impact run-time when handled explicitly. 

 
Let Gk=(Vk, Ak) be the grid network, a directed acyclic 

graph  associated with agent k ={1,...,n},  where Vk 

Tt
ktV is the set of vertices associated to agent states (i.e. 

position and orientation state variables during a given episode  
t T={0,1,2,..,|T|-1}), and Ak the set of arcs (i,j) where i,j   
 

 
Figure 3. Agent grid network (directed acyclic graph) excerpt, over 

consecutive episodes t and t+1 for a 3x3 -cell grid. Nodes depict agent state 
(position, orientation, episode) whereas arcs capture node transition between 

episodes defined by possible legal moves. Squares refer to grid cells enclosing 
8 possible agent orientations. A |T|-move path may be constructed by moving 

along arcs from stage 0 to stage |T|-1. 
 
Vk, reflecting possible agent state transition between 
consecutive episodes over the grid, corresponding to a legal 

move m selected from the action set A={left, ahead, right}. Nkt 
= N is the set of possible cell locations {1,...,|N|} over the grid 
during episode t whereas Okt = O refers to the set of possible 
agent orientations/headings {E,NE,N,NW,W,SW,S,SE} during 
episode t. As a result, Vk 

Tt
ktV  = .)(

Tt
ktkt ON The 

nodes o and d are additional fictitious origin and destination 
location vertices defining legal path ends in graph.  An excerpt 
from the abstracted representation for the agent network over 
two consecutive episodes is given in Fig. 3. An integer binary 
flow decision variable xijk is associated to each arc (i,j) Ak. 
Agent k path solution include arcs (i,j) Ak for which xijk = 1. 
Given an initial agent state i0(k), path may be defined over the 
grid network traveling along arcs connecting o to d  
instantiating flow decision variables to build feasible paths and 
then, consequently, assigning visit decision variables involved 
in the objective function. Agent state vertex duplication over 
|T| episodes is aimed at eliminating disjoint solution subtours 
otherwise difficult to handle explicitly, and provides a directed 
acyclic graph to represent a legal solution through binary 
integer flow decision variables including a multi-cycle path 
(possible occurrence of many visits on the same cell). 
Duplication implicitly satisfies path length constraint as well. 
The significant gain obtained through duplication clearly 
exceeds the cost incurred by slightly degraded model 
readability due to the utilization of more complex notations. 
The agent network includes |O| |N| |T| nodes and |O| |N| |T| |A| 
arcs. It is assumed that a cell c can be visited at most Vc times. 

B. Mathematical Modeling 
A mathematical mixed-integer linear programming (MIP) 

formulation is proposed for the discrete stationary target 
search and rescue (SAR) path planning problem. It extends the 
single agent model [25] to a multi-agent setting while 
incorporating any possible agent action moves. 

 
The open-loop decision model captures explicitly ahead of 

time anticipated information feedback resulting from projected 
action execution to update target cell occupancy probability 
(belief). Accordingly, based on the completion of a projected 
visit in cell c during time interval t, the posterior probability of 
cell containment pc’ t+1 for any cell c’ is related to its prior 
belief pc’t by: 

tccccctc ppp ''1' 1  (6) 

 
where cc’ = 1 if c’=c and 0 otherwise. pc’t refers to the 
probability/belief of cell c’ target occupancy during time 
interval t which incorporates “anticipated” information 
feedback that would result from past visits. Equation (6) 
derives from (4) and (5) while exploiting conditional 
independence property in computing pc’t+1. 

 
The variables and parameters defining the decision model 

are given as follows: 
:  set of homogeneous agents {1,2,…,n} 

N:  set of cells defining the grid search area {1,2,..,|N|} 



 

T:  set of time intervals defining the time horizon 
{0,1,...,|T|-1} 

Vc:  maximum number of visits on cell c 
pcc:  conditional probability of ‘correct’ target detection on 

a visit in cell c given that the target is located in c. 
c

:   1/(1-pcc) 
  pct:  ‘non-normalized’ belief of  cell c target occupancy 

during time interval t. {pc0} refers to the initial belief 
distribution of target occupancy over the grid.  

posct:   probability of success (finding the target) resulting 
from the observation of cell c at the end of time 
interval t  

CPOS: objective function defining cumulative probability of 
success 

vclt: binary decision variable corresponding to cumulative 
number of visits l on cell c at the end of time interval 
t – vclt =1 (otherwise 0) 

yct:  binary decision variable reflecting agent position in 
episode t. It indicates that cell c is visited during time 
interval t - tcy =1 (otherwise 0)  

xijk: state transition binary variable. xijk = 1 reflects agent k 
network state transition from state i to  j between 
consecutive episodes. Agent k path solution includes 
arcs (i,j) Ak for which xijk = 1 

 
The MIP decision model may be formulated as follows: 
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Subject to the linear convex constraint set: 
 
Cell visits: 

TtNcv
cVl
clt ,1

0
 (8) 

TtNcylv
tt

ct
Vl

clt
c

,
'0

'
0

 (9) 

 
Belief update: 
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Initial probability: 
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Network coupling: 
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Initial agent position: 
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Initial/final path condition: 
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Flow conservation: 
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Maximum path length: 
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Decision variables 
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The objective function shown in equation (7) defines 

cumulative probability of success over the agent path solution 
and time horizon |T|. Constraints are governed through 
equations (8)-(21). For a given path solution, constraints (8) 
represent the cumulative number of visits paid on site c by the 
end of  time interval t. Constraints (9) simply link that number 
to past visits on c so far. It should be noticed that simultaneous 
visits by multiple agents on a specific cell over a given time 
interval is implicitly prevented and reinforced by the fact 
that 1tcy , limiting to at most one, the number of visits a cell 
can receive during an episode. For cell coverage purposes, we 
assume a maximum number of visits Vc to be performed on 
site c. The bound Vc can be pre-computed or selected 
arbitrarily large. Target occupancy probability update is 
governed by constraint set (10). It is the explicit form of 
equation (6) relating belief and number of conducted visits. 
Constraint sets (11) and (12) determine probability of success 
contributions. Both inequations mutually reflect a visit 
requirement to a cell to ensure a feasible observation and an 
admissible success contribution aligned with the objective 
function. M is a constant. Initial probability distribution is 
specified in (13). Constraint sets (14)-(20) reflect model and 
network coupling as well as flow constraints imposed on/by 
the agent network. Constraints (14) link cell visits to the agent 
path network, connecting outgoing arcs from network nodes 
(states) on stage t to the cell c being visited during episode t. 
Accordingly, arcs (it(c),jt+1) relate to any agent state transition 
starting from position c at stage t. Agent k initial state i0(k)  
and position y0(k) as well as its related network connection are 
captured in constraints (15)-(16). Constraints (17)-(18) 



 

guarantee path solution departure and final arrival points to be 
uniquely defined. Flow conservation governed by constraints 
(19) aims at balancing the number of incoming and outgoing 
arcs respectively for a given node. Constraints (20) guarantee 
a |T|-move path solution for an agent, but turn out to be 
unnecessary as solution constraints are implicitly satisfied by 
agent network construction. Binary and continuous domain 
variables are then defined in (21). 

C. Single Team Network Simplification 
Given agent homogeneity, a single ‘team’ (n agent) T-stage 

network G=(V,A) representing possible team paths may 
alternatively be used, requiring minor network adjustments to 
concurrently incorporate agent action multiplicity subject to 
non-simultaneous visits on a same cell. The resort to a single 
team network rather than multiple network-agent mapping 
provides additional speed-up, number of decision variable 
reduction and significant computer savings (by a factor n). The 
resulting team directed acyclic graph G=(V,A) captures agent 
multiplicity substituting xijk integer flow decision variables for 
xij, slightly modifying some key flow constraints: 
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The expected computational gain comes at the low cost 
expense of reconstructing individual agent paths from the 
computed agent-free decision variables of the team network 
solution. The agent path reconstruction procedure is described 
next. 

1) Agent Path Reconstruction 

A particular agent path is reconstructed using the team 
network and its instantiated integer flow decision variables xuv. 
A legal T-move agent k path is simply generated by moving 
along the computed team solution arcs from its departure state 
node i0(k) (combining initial cell and orientation) in stage 1 
adding the related cell to the evolving path, up to stage T, 
before finally converging  to the destination node d. Decision 
variables are progressively decremented as the path expands. 
The agent path reconstruction algorithm is straightforward and 
fast (O(nT)), as summarized below: 
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The path solution pathk in the above procedure is 

composed of a sequence of T cell visits.  The path element 
pathk .cell(t) refers to the specific cell (cellu) visited by agent k 
in period t.  

D. Dynamic Planning and Time Horizon 
Dynamic problem solution can be computed constructively 

over receding horizons by repeatedly exploiting real 
information feedback as it becomes available and a new 
optimization to progressively improve solution quality. Aside 
the explicit inclusion of real information feedback, large time 
horizon problems are similarly solved through repeated fast 
subproblem optimizations over receding horizons as pictured 
in Fig. 4. Time horizon is divided in time intervals and 
corresponding subproblems sequentially solved over 
respective episodes of period T. Accordingly, a subproblem 
solution periodically expands the overall current partial path 
solution progressively incorporating a small fraction of its 
solution moves (subperiod T), while updating the objective 
function with new path contributions. Limited move insertions 
define overlapping episodes, mitigating the effects of myopic 
path planning. A new subproblem is then periodically solved 
subject to the revisited objective function updated from the 
previous episode accounting for the partial solution being 
progressively built. The process is then reiterated until the 
time horizon has been covered. The strategy consists in taking 
advantage of the fast computation of reasonable time horizon 
subproblems over a limited number of episodes to quickly 
compute a near optimal solution to the original problem. 

 

 
Figure 4. A large time horizon T  is defined over T/ T receding horizons 

of period T. Moves computed in subperiods T form the final path 
solution to the original problem. 



 

It should be mentioned that the approach would be suitable 
if and only if the planning time horizon (in general) or period 

T (receding horizon) is larger or equal to , the dimension 
of the grid. This condition allows total cell belief visibility 
over the entire grid to permit optimal planning over a given 
planning time horizon (the agent always perceives the whole 
grid). However, despite this condition, when the problem time 
horizon exceeds the planning time horizon, an optimal solution 
is not guaranteed as local optimizations myopically carried out 
over limited periods T may still slightly degrade real optimal 
path solution. However, the execution of that path solution 
would anyway be very limited in practice, since intermediate 
observed outcomes would invalidate that solution and likely 
call for path re-planning well before the time horizon deadline. 
The proposed near optimal approach over receding horizons 
nonetheless remains simple and easy to operationalize in 
practice if large problem time horizons must be considered. 

E. Discussion  

The proposed formulation confers many advantages over 
alternate modeling procedures, as the linear model allows to 
efficiently compute a bound on the optimal solution quality 
through Lagrangrean programming relaxation. This provides a 
comparative measure to carry out performance gap analysis 
over alternate solutions, as well as the ability to trade-off 
solution quality and run-time for heuristic methods operating 
under tight temporal constraints. Problem-solving may be 
naturally achieved using well-known efficient techniques from 
the IBM CPLEX software [26] package. 
 

In other respect, objective function (7) as advocated in 
[27],[28],[5] is quite legitimate in principle to reflect an 
acceptable measure of performance for target detection. 
However, a naive utilization may nonetheless lead to 
undesirable situations, raising some questionable legitimacy 
concerns in practice for search-and-rescue domains. In effect, 
equation (7) fails to discriminate different solutions 
demonstrating either a similar sum of success contributions, or 
an objective-invariant property over some feasible move 
permutations. This is partly due to the invariance property of 
the objective function against cell visits ordering. Solution 
symmetry may naturally occur for paths presenting multiple 
cell visits (cycles) or subpaths proximity in which directions 
are reversible or specific cell visits are interchangeable. 
Assuming a constant for pcc, a trivial example is the circular 
path solution where an agent achieves a round-way trip, 
performing single visits (e.g. c1 p1=0.2, c2 p2=0.8). In that 
case, the agent trajectory may be clockwise (e.g. 0.8, 0.2) or 
counter-clockwise (e.g. 0.2, 0.8). Based on (7), both solutions 
show the same quality (pcc), when in fact one of them (e.g. 0.8, 
0.2) might be clearly preferable in the context of a search-and-
rescue mission. As a result, the clockwise sequence of visits 
with steadily increasing beliefs (0.8, 0.2) might suitably lead 
to earlier detection and then improve the chance of target 
survival over the so-called ‘equivalent’ counter-clockwise path 
plan. Therefore, a more general objective function might be 

more appropriate to suit particular needs in further 
discriminating solutions (tie-breaking), such as optimizing 
cumulative probability of success, time-weighted cumulative 
probability of success or expected target detection time. In that 
respect, a generalized parameter-driven objective function to 
suitably define a variety of objectives suited by the user is 
proposed (|T|>1): 
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subject to the same constraint sets (8)-(10), (12)-(21) except 
for inequation (11) to be revised as follows: 

TMTtNcyMpppos tctcccct ,,)1())(1(  
The latter formulation is necessary to support both 
minimization and maximization problems. The discount 
parameter   [0,1]  {-|T|}  in (22) tends to reduce probability 
of success objective contributions over time. It biases time-
weighted objective definition toward specific problem 
dimensions. When , the generalized function mimics the 
cumulative probability of success objective introduced in (7), 
while  (e.g. 0.01) proposes a slightly time-weighted 
probability of success contributions variant to ultimately 
discriminate CPOS-based solutions with identical visits (but 
different ordering), in maximizing target detection earlier. The 
latter form corresponds to the dominant CPOS objective, 
modulated by average CPOS(t) values over intermediate time 
periods t. It provides a tie-breaking mechanism modifying the 
basic objective function to reduce the impact of the original 
CPOS objective function multimodality and path solution 
symmetry. Alternatively, |T| specifies an expected 
detection time minimization problem. When |T|=1, the 
solutions are virtually equivalent for all the aforementioned 
objectives.  

IV. MIP ALGORITHM - CPLEX SOLVER 
 

The IBM ILOG CPLEX parallel Optimizer version 
12.2.0.0 [26] was used, essentially exploiting various 
optimized problem-solving techniques for large size problems. 
CPLEX solves the (exact) mixed integer programming (MIP) 
problem model implicitly computing an upper bound on 
solution quality through integrality constraint relaxation 
referred as Lagrangean programming relaxation (LP). 

 
Additional speed-up can be contemplated for 

implementation efficiency purposes. Accordingly, 
simplifications involve further reduction of the number of 
decision variables and constraints. This includes the 
suppression of the belief update pit (by virtue of its explicit 
form described by equation (10) ) and probability of success 
posct variables and their respective related constraints from the 
model. It consists in substituting the content of those variables 
directly in the revisited objective function through the 
introduction of a set of new binary integer variables wclt (and 
related constraints) expressed as the product of two binary 



 

integer variables, namely, the cumulative number of visits 
variable vclt and the agent position variable yct: 
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But, as during problem-solving LP integrality constraint 
relaxation on new variables tends to violate the intended 
quadratic relationship and then initially deteriorate solution 
quality by increasing both optimality gap and run-time, 
constraints on new variables have been rather specified as 
logical constraints, a feature option offered by the CPLEX 
solver. As a result, the approach significantly reduced the 
search space during the branching process of the algorithm 
reporting an order of magnitude gain in run-time. 
 

V. COMPUTATIONAL EXPERIMENT 
 

A computational experiment has been conducted to test the 
approach for a variety of scenarios. The value of the proposed 
MIP approach is assessed in terms of optimality gap and run-
time. Computed solutions are reported against the relative 
target probability detection optimality gap shown at the end of 
horizon |T|: 

*
*

CPOS
CPOSCPOSgapOpt a   (23)   

where CPOS* is the optimal cumulative probability of success 
defined in (1) or a tight upper bound (LP solution), and CPOSa 
the performance of our approach for a given scenario. The 
closer (smaller) the optimality gap the better the performance.  

A. Simulations 

Computer simulations were conducted under the following 
conditions: 

Prior cell occupancy belief distribution for grid size N: 
exponential, uniform, cluster; N = 10x10 
Homogeneous sensor  agents: 

Actions: 8 moves 
Vc=5 for all cells c 
Sensor parameters: pc=0.8 for all cells  

Hardware Platform: 
Intel (R) Xeon (R) CPU X5670 
Shared-memory multi-processing: 8 processors, 2.93 
GHz 
Random Access Memory: 16 Go, 64 bits binary 
representation (double precision) 
 

It should be noted that as target cell occupancy probability 
sum up to one, performance analysis for large grid turns out to 
be less attractive. Accordingly, the larger the grid in general, 
the smaller (arbitrarily negligible) the related target cell 

occupancy belief, inevitably conducting either to significant 
visit payoffs for a limited number of prominently noticeable 
cells sparsely distributed over a large area, or alternatively in 
near similar cell visit rewards, for which any sub-optimal 
algorithms would likely demonstrate highly competitive (near 
similar) performance behavior. In both cases, this would result 
in a large and costly fraction of the total effort and time 
dedicated to the planning and construction of long and 
unimportant subpath segments, leading ultimately to marginal 
or insignificant gains.  Consequently, grid instances larger than 
10x10 should be further downsized and aggregated to embrace 
minimal belief coverage, to ensure substantial analysis and 
solution performance evaluation. This is why this study limited 
its investigation to the exploration of 10x10 grid instances. 

B. Results   
A sample of random simulation results is reported in Table 

I for a few 10x10 grid 8-move multi-agent scenarios over 
horizon T. Each entry corresponds to a separate problem 
instance. The subscript ‘CL’ to an instance identifier refers to a 
clustered belief distribution. Team size (number of agents) and 
time horizon are specified in second and third column 
respectively. Performances in terms of cumulative probability 
of success (CPOS) and optimality gap for the optimal CPLEX 
solver – MIP, are reported in the fourth column. Run-time 
expressed in seconds is shown in the last column. 

TABLE I. PERFORMANCE OF CPLEX SOLVER (MIP)  FOR A SAMPLE OF 
8-MOVE 2,5 –AGENT DATA SET (10X10 GRID) 

Instance #
Agents 

Time 
Horizon 

|T| 

CPLEX Solver - 
MIP 

  CPOS       Opt           
                  gap%         

CPLEX 
Solver

Run-time 
(s)

  ACL 
2 20 0.3623 0 3.24 
5 10 0.7582 0 35.9 

A 
2 20 0.3630 0 4.9 
5 10 0.7523 0 42.9 

B 
2 20 0.4021 0 6.1 
5 10 0.7650 0 58.1 

C 
2 20 0.3692 0 2.4 
5 10 0.7473 0 (1) 142.7(28.8) 

D 
2 20 0.4021 0 6.3 
5 10 0.7651 0 57.8 

ECL 
2 20 0.5545 0 4.0 
5 10 0.8905 0 22.0 

FCL 
2 20 0.7560 0 29.8 
5 10 0.9780 0 10.4* 

G 
2 12 0.6595 0 1.4 
5 10 0.9468 0 2.8* 

HCL 
2 12 0.7087 0 2.4 
5 10 0.9547 0 2.4* 

ICL 
2 12 0.8208 0 8.9 
5 10 0.9872 0 1.6* 

J 
2 20 0.3165 0 5.4 
5 10 0.6138 0 63.3 

K 
2 20 0.2521 0 4.4 
5 10 0.5736 0 38.13 

 



 

Computational results show that an optimal solution is 
computable approximately in a minute run-time, except for 
instance C (5 agents) where 142.7 seconds were necessary 
against 28 seconds to get less than a 1% gap. Solutions 
reported for 5-agent starred instances F-I are computed much 
faster using the static model [29], in which maximum belief 
coverage (

Nc
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l
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l
ccc

c

vpp
0

||0 11 ) obtained in searching 

over the grid reaches more than 95%, meaning that most 
promising cells have already been covered and that best 
solutions from both decision models are nearly similar to one 
another, making unnecessary extensive path solution 
computation for the proposed decision model (no expected 
gain). Complete computation for the decision model 
nonetheless shows a 0% gap for those instances. 

  
Computational results surprisingly indicate that 8-move 

near optimal multi-agent solution may generally be computed 
on a second timescale. It is interesting to generally note an 
order of magnitude  (approximately 10) run-time ratio for 5 
and 2 -agent problem instances respectively, despite their 
relative solution space size which is exponential (8nT/8n’T’~109). 
Providing best or near optimal solution and measurable gain 
(upper bound through Lagrangean integrality constraint 
relaxation) for practical size problems, the approach may be 
repeatedly reused in dynamic settings exploiting intermediate 
sensor readings, given its small run-time. However, even 
though 5-agent scenarios involving a time horizon T  larger 
than 12 are generally computationally prohibitive and might 
require several minutes to ensure convergence to solution 
optimality, T=10 -move planning scenarios are sufficient to 
dynamically build a path plan one step at a time, as the grid 
remains always entirely visible to the planner during planning. 
It should also be noticed that reported path solutions for the 5-
agent T=10 scenarios mostly cover a significant portion of 
interesting cells as illustrated by CPOS performance results. 
Upgrading computational power technology through faster 
hardware and augmented parallel processing might further 
extend computable T. 

VI. CONCLUSION 
An innovative mixed-integer linear programming (MIP) 

approach has been proposed to solve a probabilistic open-loop 
multi-agent search and rescue path planning problem with 
anticipated feedback, in which agent actions are subject to any 
neighbouring move directions. Small computational cost 
naturally allows dynamic planning through a closed-loop 
environment settings where real information feedback 
resulting from past sensor agent observations is exploited to 
compute a revisited solution over a rolling horizon during the 
next cycle (episode). The novelty of the approach lies in a 
revisited combination of an extended problem formulation, an 
original network representation, and a refined problem-solving 
procedure based on linear programming CPLEX technology to 
efficiently compute near-optimal solution for practical size 
problems, usually handled through heuristic methods. For the 
first time, an upper bound estimate on the optimal solution 
naturally derived from the approach may be used for 
convergence or performance comparison analysis purposes, 

and/or trading-off solution quality and execution time. 
Experimental results demonstrate the value of the proposed 
approach for practical size problems, proving problem-solving 
to be feasible in reasonable time.  

Future research directions will consist in considering 
generalized sensor footprint, and increasingly complex 
observation models (e.g. false-positive) while extending 
search to moving targets. Alternate research work will explore 
search problem modeling variants involving heterogeneous 
sensing agents. 
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